Functional analysis List 0

Zad 1. Let $x, y \in \mathbb{R}^n$ and p > 1. Prove Hölder inequality (1884):

$$\sum_{k=1}^{n} |x(k)y(k)| \le \left(\sum_{i=1}^{n} |x(k)|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y(k)|^{q}\right)^{\frac{1}{q}},$$

where $q \ge 1$ is such that $\frac{1}{p} + \frac{1}{q} = 1$. Moreover check that this inequality becomes equality if and only if

 $\exists_{\lambda \in \mathbb{R}} \ \forall_{k=1,\dots,n} \quad |x(k)|^p = \lambda |y(k)|^q.$

Zad 2. Show that for $p \ge 1$ the function $||x||_p = (\sum_{k=1}^n |x(k)|^p)^{\frac{1}{p}}$ is a norm in \mathbb{R}^n .

Zad 3. Examin the limit $\lim_{p\to\infty} ||x||_p$, $x \in \mathbb{R}^n$, and show that $||x||_{\infty} = \max_{1 \le k \le n} |x(k)|$ is a norm in \mathbb{R}^n .

Zad 4. Show that the sequence $\{x_k\}_{k\in\mathbb{N}}$ in the space $(\mathbb{R}^n, \|\cdot\|_p), p \in [1, \infty]$, is convergent to x_0 if and only if $\lim_{k\to\infty} x_k(i) = x_0(i)$ for all i = 1, ..., n.

Zad 5. Prove that $(\mathbb{R}^n, \|\cdot\|_p), p \in [1, \infty]$, are Banach spaces.

Zad 6. Let $A : (\mathbb{R}^n, \|\cdot\|_p) \to (\mathbb{R}^m, \|\cdot\|_q)$ be a linear map with the corresponding matrix $[a_{ij}]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$. Prove that, the norm of operator A

a) for p = 1 and $q = \infty$ is expressed by the formula $||A|| = \max_{\substack{1 \le i \le m \\ 1 \le j \le n}} |a_{ij}|$,

b) for $p = q = \infty$ is expressed by the formula $||A|| = \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}|$,

c) for p = q = 2 is limited by the following inequalites

$$\max_{i,j} |a_{ij}| \le ||A|| \le \sqrt{\sum_{i,j} |a_{ij}|^2}.$$

Zad 7. Compute the norms of operators acting on the euclidean space $(\mathbb{R}^2, \|\cdot\|_2)$

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \qquad C = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$