Functional analysis

List 0

Zad 1. Let $x, y \in \mathbb{R}^{n}$ and $p>1$. Prove Hölder inequality (1884):

$$
\sum_{k=1}^{n}|x(k) y(k)| \leq\left(\sum_{i=1}^{n}|x(k)|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}|y(k)|^{q}\right)^{\frac{1}{q}}
$$

where $q \geq 1$ is such that $\frac{1}{p}+\frac{1}{q}=1$. Moreover check that this inequality becomes equality if and only if

$$
\exists_{\lambda \in \mathbb{R}} \forall_{k=1, \ldots, n} \quad|x(k)|^{p}=\lambda|y(k)|^{q} .
$$

Zad 2. Show that for $p \geq 1$ the function $\|x\|_{p}=\left(\sum_{k=1}^{n}|x(k)|^{p}\right)^{\frac{1}{p}}$ is a norm in \mathbb{R}^{n}.
Zad 3. Examin the limit $\lim _{p \rightarrow \infty}\|x\|_{p}, x \in \mathbb{R}^{n}$, and show that $\|x\|_{\infty}=\max _{1 \leq k \leq n}|x(k)|$ is a norm in \mathbb{R}^{n}.

Zad 4. Show that the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ in the space $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$, $p \in[1, \infty]$, is convergent to x_{0} if and only if $\lim _{k \rightarrow \infty} x_{k}(i)=x_{0}(i)$ for all $i=1, \ldots, n$.

Zad 5. Prove that $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right), p \in[1, \infty]$, are Banach spaces.
Zad 6. Let $A:\left(\mathbb{R}^{n},\|\cdot\|_{p}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{q}\right)$ be a linear map with the corresponding matrix $\left[a_{i j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$. Prove that, the norm of operator A
a) for $p=1$ and $q=\infty$ is expressed by the formula $\|A\|=\max _{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}\left|a_{i j}\right|$,
b) for $p=q=\infty$ is expressed by the formula $\|A\|=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|$,
c) for $p=q=2$ is limited by the following inequalites

$$
\max _{i, j}\left|a_{i j}\right| \leq\|A\| \leq \sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}
$$

Zad 7. Compute the norms of operators acting on the euclidean space $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right), \quad C=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right), \quad D=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

